AP BIOLOGY EQUATIONS AND FORMULAS

STATISTICAL ANALYSIS AND PROBABILITY									<i>s</i> = sample standard deviation (i.e., the sample		
Standard Error				Mean					based estimate of the standard deviation of the		
$SE_{\overline{x}} = \frac{S}{\sqrt{n}}$				$\overline{n} = \frac{1}{n} \sum_{i=1}^{n} \sum$	x_i				population) $\overline{x} = mean$		
Standard Deviation				Chi-Square					n = size of the sample		
$s = \sqrt{\frac{\sum (x_i - \overline{x})^2}{n - 1}}$									 o = observed individuals with observed genotype e = expected individuals with observed genotype Degrees of freedom equals the number of distinct 		
CHI-SQUARE TABLE								possible outcomes minus one.			
Degrees of Freedom											
р	1	2	3	4	5	6	7	8			
0.05	3.84	2.99	7.82	9.49	11.07	12.59	14.07	15.51]		
0.01	6.64	9.32	11.34	13.28	15.09	16.81	18.48	20.09			
LAWS OF PROBABILITY									METRIC PREFIXES		
If A and B are mutually exclusive, then P (A or B) = $P(A) + P(B)$								Factor	Prefix	Symbol	
If A and B are independent, then P (A and B) = $P(A) \times P(B)$								10 ⁹	giga	G	
		·							10 ⁶	mega	Μ
2 0	2		DY-WE	INBERG					10 ³	kilo	k
$p^2 + 2p$	$p^2 + 2pq + q^2 = 1$ p = frequency of the dominant allele in a population								10-2	centi	С
$b \mid a =$									10-3	milli	m
p + q = 1q = frequency of the recessiveallele in a population								10-6	micro	μ	
								10-9	nano	n	
							10 ⁻¹²	pico	р		
Mode = value that occurs most frequently in a data set											
Media	Median = middle value that separates the greater and lesser halves of a data set										
Mean	Mean = sum of all data points divided by number of data points										

Mean = sum of all data points divided by number of data points

Range = value obtained by subtracting the smallest observation (sample minimum) from the greatest (sample maximum)

RATE AND	Water Potential (Ψ)		
Rate	dY= amount of change	$\Psi = \Psi p + \Psi s$	
dY/dt	<i>t</i> = time	$\Psi p = pressure potential$	
Population Growth	B = birth rate	Ψ s = solute potential	
dN/dt=B-D	D = death rate	The water potential will be equal to the	
Exponential Growth	N = population size	solute potential of a solution in an open	
$\frac{dN}{dt} = r_{\max}N$	K = carrying capacity	container, since the pressure potential	
u	r _{max} = maximum per capita growth rate	of the solution in an open container is	
Logistic Growth	of population	zero. The Solute Potential of the Solution	
$\frac{dN}{dt} = r_{\max} N \left(\frac{K - N}{K} \right)$		The Solute Potential of the Solution $\Psi s = -iCRT$	
		i = ionization constant (For sucrose	
Temperature Coefficient Q ₁₀	$t_2 = higher temperature$	this is 1.0 because sucrose does no	
$(k_2)^{\frac{10}{t_2-t_1}}$	$t_1 = $ lower temperature	ionize in water.)	
$Q_{10} = \left(\frac{k_2}{k_1}\right)^{\frac{10}{t_2 - t_1}}$	k_2 = metabolic rate at t_2	C = molar concentration	
Primary Productivity Calculation	$k_1 = \text{metabolic rate at } t_1$	R = pressure constant (R = 0.0831 liter bars/mole K)	
$mg O_2/L \ge 0.698 = mL O_2/L$	Q ₁₀ = the <i>factor</i> by which the reaction rate increases when the		
$mL O_2/L \ge 0.536 = mg \text{ carbon fixed/L}$	temperature is raised by ten	T = temperature in Kelvin (273 + °C)	
	degrees		
SURFACE ARE/	Dilution – used to create a dilute		
Volume of a Sphere	r = radius	solution from a concentrated stock	
$V = 4/3 \pi r^3$	I = length	solution	
Volume of a Cube (or Square Column)	h = height	$C_i V_i = C_f V_f$	
V = l w h	w = width	i = initial (starting)	
Volume of a Column	A = surface area	C = concentration of solute	
$V = \pi \ r^2 \ h$	V = volume	f = final (desired)	
Surface Area of a Sphere	$\Sigma = $ Sum of all	V = volume of solution	
$A = 4 \pi r^2$	a = surface area of one side of the cube	Gibbs Free Energy	
Surface Area of a Cube		$\Delta G = \Delta H - T \Delta S$	
A = 6 a		ΔG = change in Gibbs free energy	
Surface Area of a Rectangular Solid		ΔS = change in entropy	
$A = \Sigma$ (surface area of each side)		ΔH = change in enthalpy	
		<i>T</i> = absolute temperature (in Kelvin)	
		pH = – log [H+]	