

<text><list-item>

Old, Old School Ideas about Genetics

- Pangenesis
 - Particles called pangenes came from all parts of an organism to make sperm and eggs
 - Characteristics acquired in an organisms lifetime could be passed on to future generations
- Blending
 - Genetic material from both parents mixes to form a mixture of traits (like mixing paint)
- We now know both of these ideas are incorrect

1

Gregor Mendel

- Austrian Monk who worked with pea plants in the 1860s
- Proposed the idea that particles of heritable information (what we call genes) are passed on from generation to generation
- Chose to work with pea plants because he could observe many **characters** (features ex. flower color) with several options of **traits** (purple, white, etc.)
- He could also strictly control mating
 - Self-fertilization
 - Cross-fertilization

Four Hypotheses about the Law of Segregation

- Genes are found in alternative versions called **alleles**; the listing of alleles gives the **genotype** of an organism
- For each characteristic, an organism inherits two alleles (one from each parent) that can be the same of different
 - Homozygous identical alleles
 - Heterozygous different alleles
- If the alleles are different, the dominant allele determines the organism's **phenotype**
- Law of segregation allele pairs separate from each other during the production of gametes so that sperm and egg has only one allele for each gene

7

Law of Independent Assortment

- Seen in a dihybrid cross
- Mendel needed to explain: why combinations not found in the parents were observed and why a 9:3:3:1 ratio was observed

Law of Independent Assortment - each pair of alleles segregates independently of the other pair during gamete formation (this means that all combinations are possible)

Test Crosses

- Help to determine the genotype of an individual
- Involves crossing the unknown individual with a homozygous recessive individual

10

		testiles a	C	
Disorder	Major Symptoms	Incidence	Comments	
Recessive disorders				
Albinism	Lack of pigment in skin, hair, and eyes	1 22,000	Prone to skin cancer	
Cystic fibrosis	Excess mucus in lungs, digestive tract, liver; increased susceptibility to infections; death in early childhood unless treated	$\frac{1}{2,500}$ Caucasians	See Module 9.9	
Galactosemia	Accumulation of galactose in tissues; mental retardation; eye and liver damage	1 100,000	Treated by eliminating galactose from diet	
Phenylketonuria (PKU)	Accumulation of phenylalanine in blood; lack of normal skin pigment; mental retardation	$\frac{1}{10,000}$ in U.S. and Europe	See Module 9.10	
Sickle-cell disease	Sickled red blood cells; damage to many tissues	$\frac{1}{400}$ African-Americans	See Module 9.13	
Tay-Sachs disease	Lipid accumulation in brain cells; mental deficiency; blindness; death in childhood	$\frac{1}{3,500}$ Jews from central Europe	See Module 4.11	
Dominant disorders				
Achondroplasia	Dwarfism	1 25.000	See Module 9.9	
Alzheimer's disease one type)	Mental deterioration; usually strikes late in life	Not known		
Huntington's disease	Mental deterioration and uncontrollable movements; strikes in middle age	1 25,000	See Module 9.9	
lypercholesterolemia	Excess cholesterol in blood; heart disease	$\frac{1}{500}$ are heterozygous	See Module 9.11	

Multiple Alleles

- More than two alleles found in the population
- Diploid individual can carry any two of the alleles
- Most common example is ABO blood type
- Codominance neither allele is dominant over the other (see both phenotypes)

Blood Group (Phenotype)	Genotypes	Red Blood Cells	Antibodies Present in Blood	Reaction When Blood from Groups Below Is Mixed with Antibodies from Groups at Left			
				0	Α	в	AB
o	ii		Anti-A Anti-B			**	
A	I ^A I ^A or I ^A i	Carbohydrate A	Anti-B				?
в	I ^B I ^B or I ^B i	Carbohydrate B	Anti-A				
AB	IAIB	<u>پُ</u>	-				

Phenotype can be Influenced by the Environment

- Skin color can be impacted by sunlight
- Susceptibility to diseases (like cancer) has hereditary and environmental components

Linked Genes

- Genes on the same chromosome tend to be inherited together
- Example: Plants with purple flowers and long pollen was crossed with red flowers and pollen
- F₂ generation did not show 9:3:3:1 ratio
 - Most F₂ had purple flowers and long pollen or red flowers and round pollen
- Linked alleles can be separated by crossing over

Chromosomes Determine Sex in Most Species

- X-Y system in mammals and fruit flies
- X-O system in grasshoppers and roaches
- Z-W system in birds, butterflies, and some fish
- In ants and bees
 - Diploid = female; Haploid = male

Fig. 9.20

Y Chromosome and Evolution

- Similarities in Y chromosome sequences show a significant percentage of men are related to the same male parent
- This demonstrates a connection between people living in distant locations