
Chapter 8: Cellular Reproduction and Inheritance Part II

Honors Biology 2012

1

2

Meiosis • Converts diploid nuclei into haploid nuclei Haploid gametes (n = 23) · Diploid - have two homologous sets of chromosomes n Egg cell n Sperm cell Fertilization • Haploid - one set of chromosomes Meiosis • Meiosis occurs in sex organs Diploid producing gametes (2n = Multicellular • Gametes - sex cells (egg and ploid adults (2n = 46) sperm) • Fertilization - union of sperm and egg Mitosis and development

Zygote - has a diploid number of chromosomes (one from each parent)

Meiosis

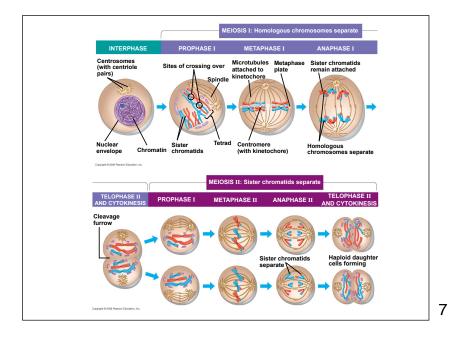
- Still follows interphase (G₁, S, G₂)
- Steps are similar to mitosis, but they happen twice
 - Meiosis I homologous chromosomes separate
 - Chromosome number reduced in half (diploid to haploid)
 - Meiosis II sister chromatids separate

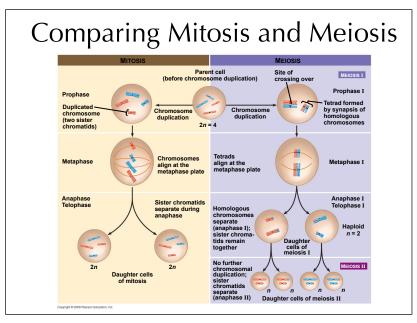
4

Meiosis I

• Prophase I

- Anaphase I
- chromosomes coil and pair up
- Each pair is called a tetrad
- Crossing over can occur
- Metaphase I
 - Tetrads align

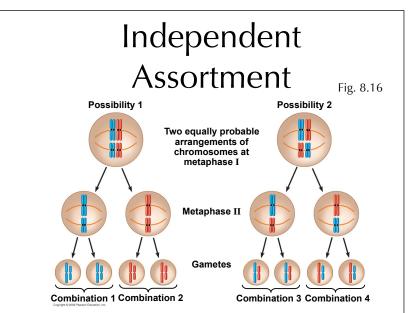

- - Homologous pairs separate
- Telophase I
 - Nuclear envelope forms
 - Each nucleus has a haploid number of chromosomes

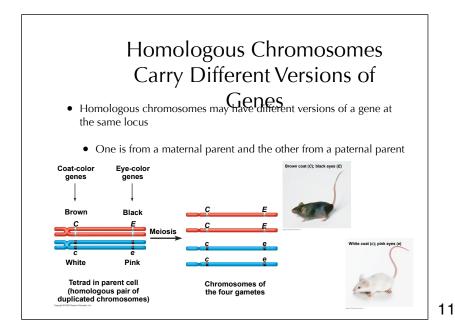

5

Meiosis II

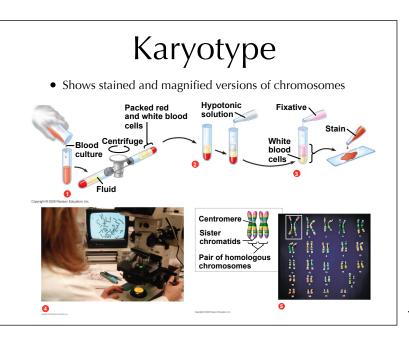
- Happens after Meiosis I without chromosomes duplicating
- Prophase II
 - Chromosomes coil
- Metaphase II
 - Chromosomes line up at the equator

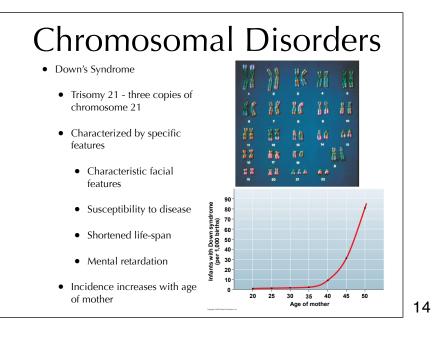
- Anaphase II
 - Sister chromatids separate
- Telophase II
 - Nuclear envelope reforms
- Cytokinesis happens to form a total of four haploid cells

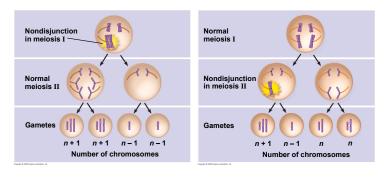



8


Factors that Increase Genetic Diversity

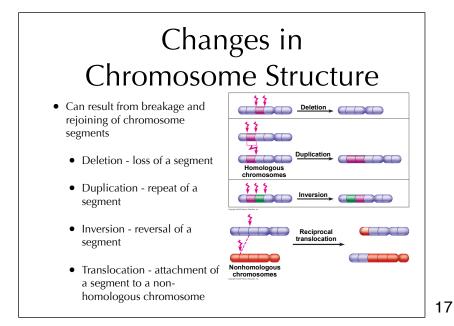

- Independent Assortment independent orientation of chromosomes at metaphase I
- Random Fertilization unique combinations of each sperm and egg
- Crossing Over genetic recombination
 - exchange of genetic material between homologous chromosomes





Chromosomal Disorders

- Many caused by nondisjunction (failure of chromosomes or chromatids to separate during meiosis)
- Can happen in Meiosis I or Meiosis II



Chromosomal Disorders

- Can also occur with sex chromosomes
- Klinefelter Syndrome produces males who are sterile and can express female secondary sex characteristics
- Turner Syndrome produce females who are sterile and who have poor development of female secondary sex characteristics

TABLE 8.22	ABNORMALITIES OF SEX CHROMOSOME NUMBER IN HUMANS		
Sex Chromosomes	Syndrome	Origin of Nondisjunction	Frequency in Population
ХХҮ	Klinefelter syndrome (male)	Meiosis in egg or sperm formation	<u>1</u> 2,000
XYY	None (normal male)	Meiosis in sperm formation	1 2,000
XXX	None (normal female)	Meiosis in egg or sperm formation	<u>1</u> 1,000
хо	Turner syndrome (female)	Meiosis in egg or sperm formation	1 5,000

16

