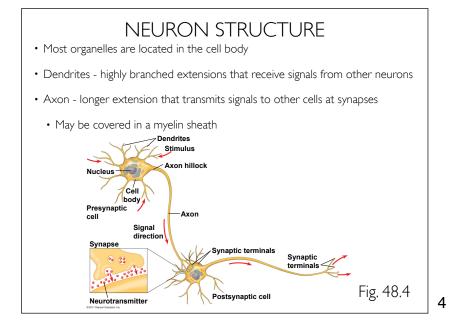
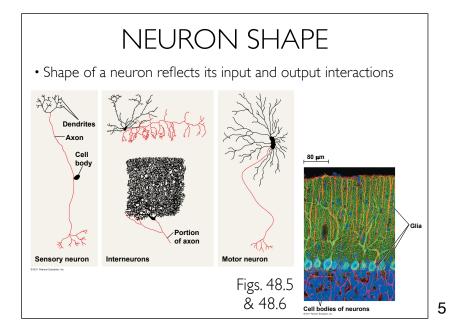


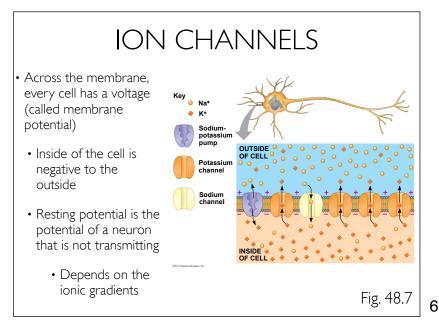
CHAPTER 48 & 49: NERVOUS SYSTEMS AP Biology 2013

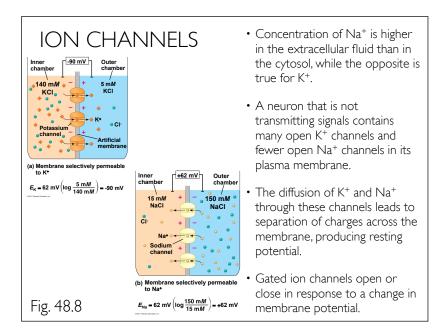
1

- Human brain consists of an estimated 100 billion neurons. Each neuron may communicate with thousands of other neurons that function in specialized circuits dedicated to different tasks
- All animals except sponges have some type of nervous system
- Cone snail kills prey with venom that disables neurons (nerve cells that transfer information)
- Neurons use two types of signals: electrical (long-distance), chemical (short distance)
- Processing information takes place in simple clusters of neurons called ganglia or a more complex structure called a brain


OVERVIEW


Fig. 48. I


2


3

INFORMATION PROCESSING Three stages: sensory input, integration, and motor output Sensory neurons - transmit information from sensors that detect external stimuli and internal conditions Integration Interneurons -part of the CNS that receives and integrates sensory information Motor neurons - send motor output signals to the effector cells Central nervous system (CNS) - brain Effector Peripheral nervous Central nervous system (PNS) system (CNS) and nerve cord where integration takes place Fig. 48.3 Peripheral nervous system (PNS) carries information into and out of CNS

7

• If a cell has gated ion channels, its membrane potential may change in response to stimuli that open or close the channels. • Stimuli either trigger hyperpolarization (increase in magnitude of the membrane potential) or depolarization (reduction of the magnitude of the membrane potential) • A signal strong enough to produce a depolarization that reaches the threshold triggers a stronger response (action potential) · Action potential - brief **all-or-nothing** depolarization of a neuron's plasma membrane; type of signal that carries information along axons Stimulu Stimulus potential (mV) Ĩ otential 0 1 2 3 4 5 6 Time (msec) 1 2 3 4 5 Time (msec) 2 3 4

ACTION POTENTIALS

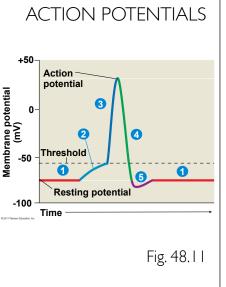
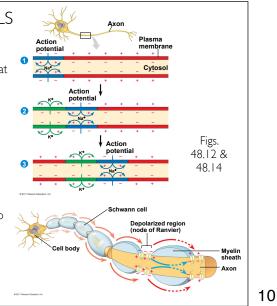

8

Fig. 48.10

• Both voltage-gated Na⁺ channels and voltage-gated K⁺ channels are involved in the production of action potential

increa to K+


- When a stimulus depolarizes the membrane, Na⁺ channels open, allowing Na⁺ to diffuse into the cell
- As the action potential subsides, K⁺ channels open, and K⁺ flows out of the cell
- A refractory period follows during which a second action potential cannot be initiated.

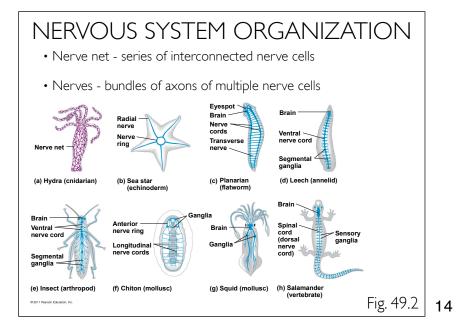
(c) Action potential triggered by a depolarization that reaches the threshold

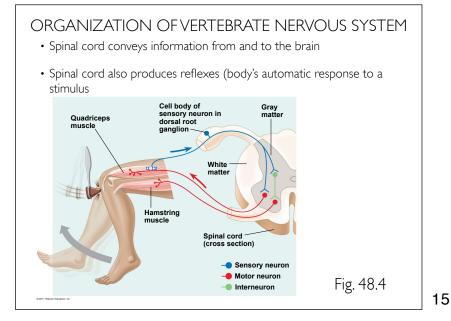
ACTION POTENTIALS

- Can travel long distances
- Action potential is generated at the axon hillock where an electrical current depolarizes the neighboring region of the axon
- The speed increases with the diameter of the axon
- In vertebrates axons are myelinated which causes the speed of an action potential to increase
 - Action potential jumps between the nodes of Ranvier in a process called saltatory conduction

NEURONS COMMUNICATE AT SYNAPSES Postsynaptic cell Electrical synapse - electrical current flows directly from one cell to Synaptic ve another via a gap junction Chemical synapse - a presynaptic neuron releases chemical resynap neurotransmitters which are stored in the synaptic terminal Voltage-gated Ligand-gated When the action potential reaches the terminal neurotransmitters are Postsyna neuron Synapti released into the synaptic cleft of pre-synaptic where they bind to ligand-gated ion channels • Binding of neurotransmitters causes ion channels to open Figs. 48.15 & 48.16 generating a postsynaptic potential

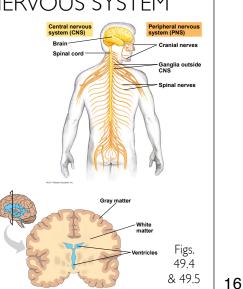
POSTSYNAPTIC POTENTIALS

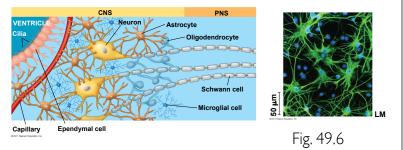

- After release, neurotransmitters diffuse out of the synaptic cleft and may be taken up by surrounding cells and degraded.
- Excitatory postsynaptic potentials (EPSPs) most neurons have many synapses so a single EPSP is too small to trigger an action potential in the postsynaptic neuron
- Inhibitory postsynaptic potentials (IPSPs) can counter the effect of an EPSP

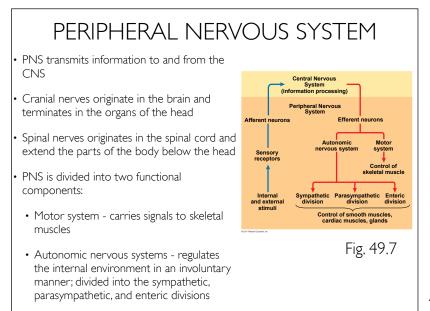


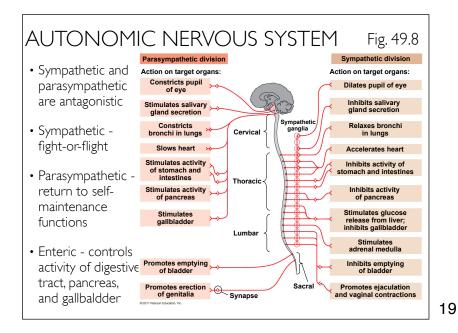
NEUROTRANSMITTERS

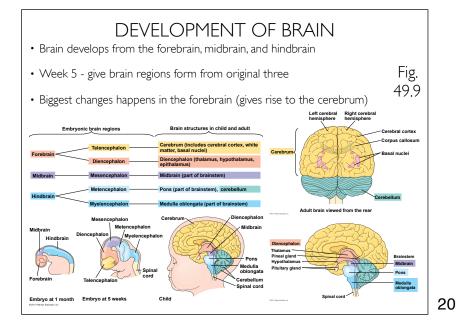
- Same neurotransmitter can produce different effects in different types of cells
- Acetylcholine one of the most common in both vertebrates and invertebrates; can be inhibitory or excitatory
- Biogenic amines epinephrine, norepinephrine, dopamine, and serotonin (active in the CNS and PNS)
- Neuropeptides endorphins which impact perception of pain
- · Amino acids and peptides
- Gasses nitric oxide and carbon monoxide (regulators in the PNS)


Table 48.2 Major Neurotransmitters	
Neurotransmitter	Structure
Acetylcholine	Н ₃ С—С—О—СН ₂ —СН ₃ Н ₃ С—С—О—СН ₂ —СН ₂ —И - СН ₃ СН ₃
Amino Acids	
GABA (gamma- aminobutyric acid)	H ₂ N-CH ₂ -CH ₂ -CH ₂ -COOH
Glutamate	H ₂ N-CH-CH ₂ -CH ₂ -COOH
Glycine	H ₂ N-CH ₂ -COOH
Biogenic Amines	но
Norepinephrine	HO-CH-CH2-NH2
Dopamine	но
	HO-CH2-CH2-NH2
Serotonin	HO II CH CH CH CH CH CH CH CH CH CH CH CH CH
Neuropeptides (a very	diverse group, only two of which are shown)
Substance P Arg—Pro—Lys—	-Pro-Gin-Gin-Phe-Phe-Giy-Leu-Me
Met-enkephalin (an en Tyr—Gly—Gly—	
Gases	
Nitric oxide	N=0

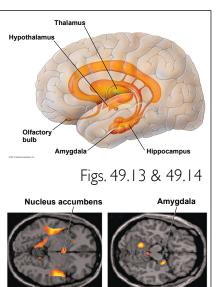

VERTEBRATE NERVOUS SYSTEM


- Cephalization and distinct CNS and PNS
- Brain provides integrative power that allows for complex behavior
- Spinal cord integrates simple responses to stimuli and conveys information to and from the brain
- Central canal of the spinal cord and four ventricles of the brian are hollow because they are derived from the dorsal embryonic nerve cord and filled with cerebrospinal fluid




SUPPORTING CELLS

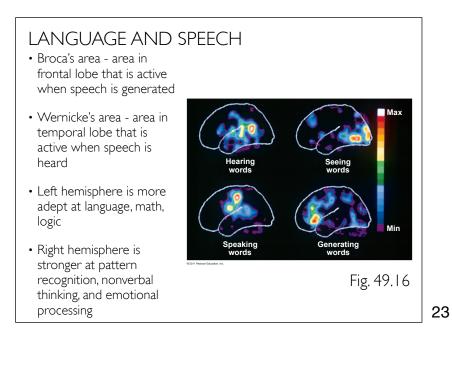
- Gilia essential for structural integrity of the nervous system and for normal functioning neurons
 - Astrocytes provide structural support for neurons and regulate extracellular concentrations of ions and neurotransmitters in the CNS
 - Oligodendrocytes (CNS) and Schwann cells (PNS) are gila that form the myelin sheaths around axons of many vertebrate neurons

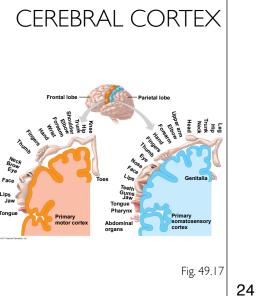


AROUSAL AND SLEEP

- Controlled by brainstem
- Regulates the amount and type of information that reaches the cerebral cortex and affects alertness
- Hormone melatonin is released by the pineal glad and plays a role in bird and mammal sleep cycles
- Sleep is essential (may play a role in memory)
- Biological clock can direct gene expression and is usually synchronized to light and dark cycles

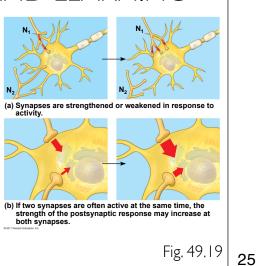
emotions


- Limbic system ring of structures around the brainstem
- Includes three parts of the cerebral cortex: amygdala, hippocampus, and olfactory bulb
 - These structures interact with with the neocortex to mediate primary emotions and attach "feelings" to survival-related functions

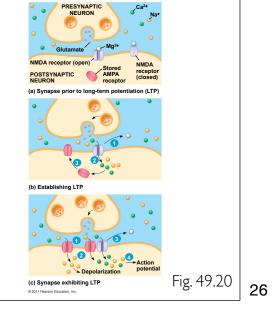

Happy music

22

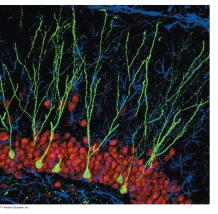
Sad music



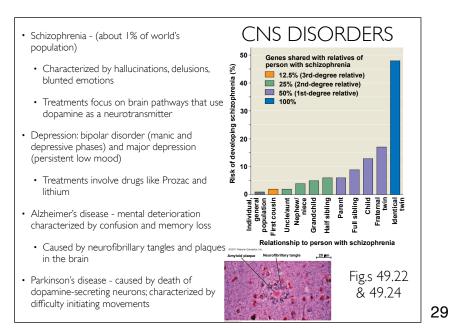
- Has four lobes: frontal, parietal, temporal, and occipital
- Somatosensory cortex and motor cortex - neurons are distributed according to the part of the body that generates sensory input or receives motor input
- Lateralization competing functions segregate and displace each other in the cortex of left and right hemispheres
 - Left hemisphere language, math, logical operations
 - Right hemisphere pattern recognition, nonverbal thinking , and emotional processing

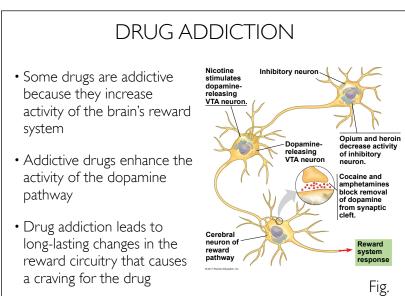

MEMORY AND LEARNING

- Frontal lobes site of shortterm memory
 - Interact with hippocampus and amygdala to consolidate long-term memory
- Areas of the cerebral cortex are involved in the storing and retrieving of words and images
- Neural plasticity describes ability of nervous system to be modified after birth


MEMORY AND LEARNING

- Short-term memory - accessed via the hippocampus
- Long-term memory stored in cerebral cortex
- Long-term potentiation - involves increase in strength of synaptic transmission


STEM CELLS IN THE BRAIN


- Adult human brain contains neural stem cells
- Play a role in learning and memory

CNS INJURIES

- CNS (unlike PNS) cannot repair itself when damaged or diseased
- Receptor binding of adjacent nerve cells triggers a signal transduction pathway which may cause an axon to grow toward or away from the source of a signal
- Neural stem cells have the ability to differentiate into mature neurons and may hold promise for repairing damage

