Chapter 38: Conservation Biology

Honors Biology 2013

1

Conservation Biology

- Goal is to stop the loss of biodiversity
 - Can do this by protecting one species
 - Also can do this by protecting an ecosystem
- Biodiversity variety of living organisms

2

Levels of Biodiversity

- Three levels:
 - Genetic diversity microevolution and adaptation
 - Species diversity variety of species in an ecosystem
 - Ecosystem diversity variety of ecosystems

Fig. 32.2

Endangered vs. Threatened Species

- Defined by the U.S. Endangered Species Act
- Endangered Species species in danger of extinction throughout all or a significant portion of its range
- Threatened Species species likely to become endangered

4

Habitat Destruction

- Greatest threat to biodiversity = human alteration of habitats
- Ways habitats are altered:
 - Agriculture
 - Urban Development
 - Deforestation
 - Mining
 - Environmental pollution

5

Invasive Species

- Often considered the second greatest threat to biodiversity
- What do invasive species do?
 - Compete with native species
 - Prey on native species
 - Parasitize native species

Fig. 38.3

Overexploitation

- Over-harvesting threatens plants and animals
- Hunting wild animals depletes biodiversity

Fig. 38.3B

7

Pollution

- Pollution is transferred from one species to another through natural cycles (like the water cycle)
 - Sulfur and nitrogen oxides emitted into the atmosphere are converted into acid rain
- Ozone Layer Depletion
 - Ozone thinned by chlorofluorocarbons from aerosol cans and manufacturing

8

Nutrient Pollution

- Pollution from fertilizers and wastes
 - Fertilizers used in the midwest have been linked to "dead zones" in the Gulf of Mexico
 - Excess nutrients cause algal blooms
 - As algae die, their decomposition uses so much oxygen that the waters become oxygen depleted and other organisms die

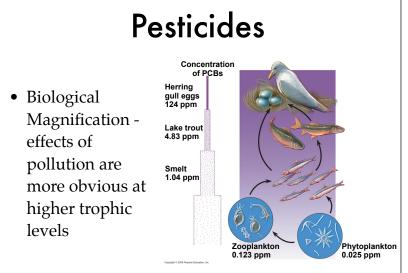


Fig. 38.4

10

Global Warming

- Global temperature has risen
 - 0.8°C in the last 100 years
 - 0.6°C of that in the last 30 years
 - 2 to 4.5°C increases are likely by the end of the century
- Problems this causes:
 - · Shrinking sea ice
 - Thinning ice sheets
 - Melting permafrost

11

Human Activities Cause Global Warming

- Atmospheric CO₂ did not exceed 300ppm for 650,000 years
- Atmospheric CO₂ is now about 385ppm
- Methane and nitrous oxide also trap heat

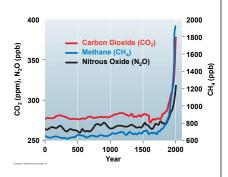


Fig. 38.6A

Impact on Biomes

- Terrestrial Biomes are determined by temperature and precipitation
 - Both change because of global warming
 - Impacts where species can live
 - Impacts seasonal changes in living organisms (especially plants)

Fig. 38.7

13

Landscape Ecology

- Landscape ecology application of ecological principals to the study of the dynamics of several ecosystems
 - Ex. the boarder of a forest with a grassland
- May create a movement corridor
 - Narrow strip of high quality habitat connecting otherwise isolated patches

Fig. 38.10

14

Biodiversity Hot Spots

- Small areas with large numbers of endangered and threatened species
 - Often have many endemic species
 - endemic species species not found elsewhere on earth
- Often found on islands and coastal areas near the tropics

Zoned Reserves

- Zoned reserve extensive region of land
 that includes one or
 more areas undisturbed
 by humans
 - Land surrounding the undisturbed areas are protected from alteration by humans

Fig. 38.12A

16

Sustainable Development

- long-term prosperity of human societies and the ecosystems that support them
- Biosphere is very complex
 - Research has to be done to understand the complexity and make well-informed decisions

17