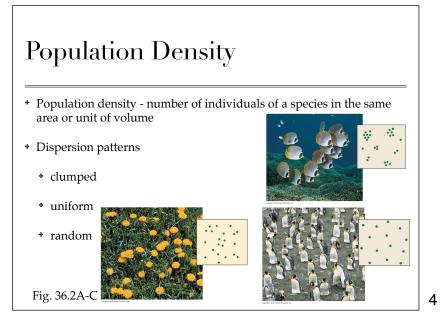


Chapter 36: Population Ecology

2011

1


Population Ecology

- * Concerned with changes in population size
- * Examines factors that regulate populations over time
 - * ex. predation, food sources, human activities
- * Helps explain the biodiversity of an environment

2

Populations

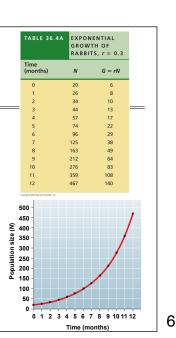
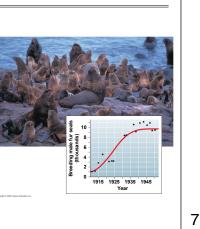
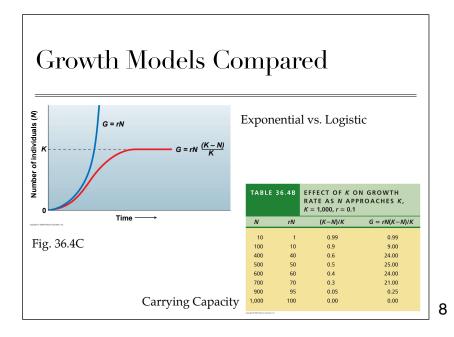
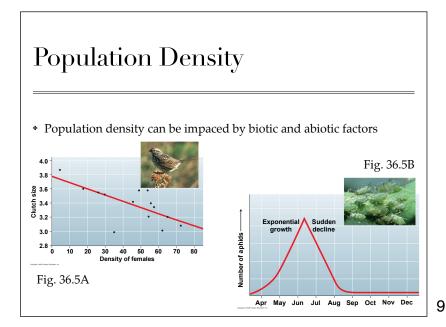

- Population a group of individuals of the same species living in the same place at the same time
 - * Rely on the same resources
 - * Influenced by the same environmental factors
 - * Likely to interact and breed with each other
- * Population Dynamics
 - * Interaction between biotic and abiotic factors
 - * Populations increase through birth and immigration
 - * Populations decrease through death and emigration

			TABLE 36.3 LIFE TABLE FOR THE U.S. POPULATION IN 2003		
Life Tables		Age Interval	Number Living at Start of Age Interval (N)	Number Dying During Interval (D)	Chance of Surviving Interval (1-D/N)
		0-10	100,000	884	0.991
		10-20	99,116	423	0.996
 Life tables - track survivorship over the span of individuals in a population 		20-30	98,693	941	0.990
	tha lifa	30-40	97,752	1,308	0.987
	uie me	40-50	96,444	2,859	0.970
		50-60	93,585	5,825	0.938
 Help conservationists find weaknes the population 		60-70	87,760	12,225	0.861
	lesses in	70-80	75,535	22,794	0.698
		80-90 90+	52,741 21,340	31,401 21,340	0.405
 Survivorship Curves - plot of the pro of individuals alive at each age 	-	Cogunge: © 2000 Peerson Educe	ion inc		
 Type I 	rs (log scal			I	
Type II	on_ivivo 10-		П	> 1	K
 Type II Type III Fig. 36.3 	centage of surviv	п	1		

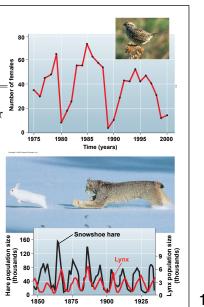
Exponential Growth Model


- Populations change as new individuals are born, die, immigrate, or emigrate
- * Exponential growth rate of population increase under ideal conditions
 - * Calculated using the equation G = rN
 - * G is the growth rate
 - * N is the population size
 - r is the per capita rate of increase (average contribution of each individual to population growth)




Logistic Growth Model $G = rN \frac{(K-N)}{K}$

- ÷ This growth model takes limiting factors into consideration
 - * Limiting factors are environmental factors that restrict population growth
 - * Population growth slows as population density increases
 - * K = Carrying Capacity
 - * the maximum number a population can sustain



Population Fluctuations

- * Most populations fluctuate in number
 - * Often caused by abiotic factors
- Some populations fluctuate in a predictable way (boom-and-bust cycles)
- * Causes:
 - * Food Shortages
 - * Predator-prey interactions

Evolution and Life Histories

- * Life history traits that affect an organism's schedule of reproduction and death
 - * r-selected traits
 - * K-selected traits

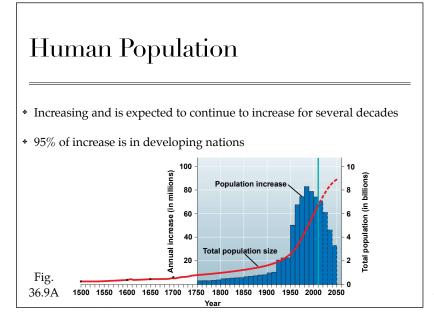
11

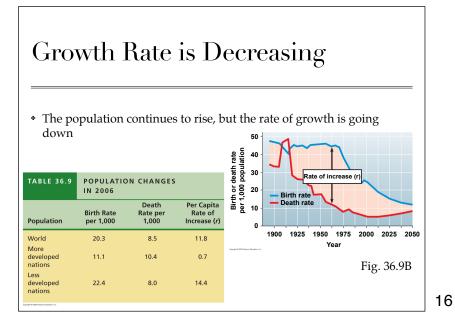
r-selected Species

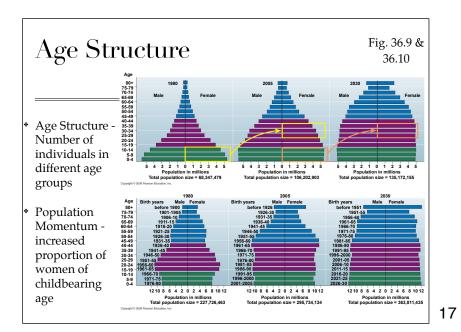
- * Small-bodied, short-lived animals
- * Develop and sexually mature rapidly
- * Have large numbers of offspring
- * Offer little or no parental care
- * Environments are usually prone to fire, flood, hurricanes, droughts, or cold weather
- * Opportunists


K-selected Species

- * Large-bodied, long-lived animals
- * Develop slowly
- * produce few, well cared for, offspring
- * Population growth is limited by density-dependent factors
- * Usually in very competitive environments


13


Population Ecology Applications


- Sustainable resource management harvesting crops at levels that do not damage the viability of the resource
- Maximum sustainable yield harvesting the most individuals without forcing the population to decline
- * Often economic concerns outweigh environmental concerns
 - * ex. cod fisheries

