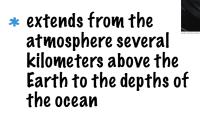
Chapter 34: The Biosphere


Honors Biology 2013

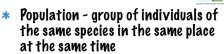
1

2

The Biosphere

- all of the Earth that is inhabited by life
- Some places that contain life are surprising.

Variables That Affect Organisms


- Biotic Factors living components of the environment
- Abiotic Factors nonliving components of the environment
- Habitat specific environment in which an organism lives that includes both biotic and abiotic factors

Levels of Organization


Organism - one individual of a * particular species

Fig. 34.1 A-D

- Community many populations * living close enough for interactions (all of the biotic factors in a particular environment)
- Ecosystem includes the biotic and * abiotic components of an environment

4

Landscapes * Landscapes - arrays of ecosystems * Can be visible from the air as patches

5

Fia.

Ecology ≠ Environmentalism

- * Ecology is the science we use to understand interactions within the environment
- * Environmentalism is a social movement created to raise and solve environmental concerns
- * Environmentalist will use ecological data to support their claims

Pesticides

- * DDT can be sprayed on a field by airplanes and eradicate all of the crop-killing insects
- * It increased crop yields significantly
- Also used to kill disease carrying insects like mosquitos (malaria), body lice (typhus), and fleas (plague)
- * Two problems:
 - * Pesticide resistance
 - * Silent Spring by Rachel Carson

7

Rachel Carson

- Alerted the public to the dangers of pesticide use
- * Highlighted impact on birds
 - PDT builds up (biomagnification) in tissues of living organisms. The higher you are up the food chain, the more it impacts you.
- PDT can be found anywhere on Earth (even where it has not ever been used)
- Carson is credited with starting the modern environmental movement.

Fig. 34.2B

8

Energy Source

- * All organisms require energy to live
- Most often the ultimate energy source is solar energy
- In aquatic environments, photosynthesis can only happen at the surface because light can not penetrate very far.
- In dark environments, other energy sources are required.
 - Inorganic chemicals like sulfide used by bacteria.
 - Tube worms can use the bacteria to produce its energy

Fig. 34.3A

Temperature

- * Abiotic Factor
- * Can have a huge impact on metabolism
 - * Temps close to 0°C are too cold for most organisms
 - * Temps above 45°C destroy enzymes
- * Exceptions:
 - Bacteria in hot springs have special enzymes that only function at high temperatures
 - Mammals and birds regulate their body temperature

10

* Essential to all life

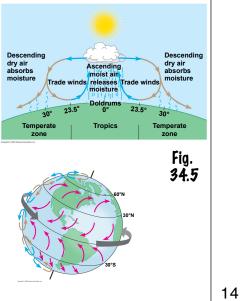
Water

Nutrients

- * Water-tight coverings are essential to terrestrial animals
- Aquatic are surrounded by water but solute concentrations can be a problem
 - * Freshwater organisms live in a hypotonic environment
 - * Marine organisms live in a hypertonic environment
- * Amount of species present depends on the nutrients available
- Key nutrients for life:
- * nitrogen
- * phosphorus
- This is also true in aquatic environments

11

Other Aquatic and Terrestrial Factors


- * Aquatic Factors
 - * Oxygen (dissolved)
 - Cold, fast-moving water is usually higher in dissolved oxygen
 - * Salinity the amount of dissolved salts in the water
- * Terrestrial Factors
 - * Wind
 - Can damage or create openings in forests (allows for colonization)
 - * Increases water loss through evaporation

Climate North Pole 60°N Low angle of incoming sunlight 30°N Tropic of Cancer **Regional climate impacts** * Sunlight strikes 0° (equator) how terrestrial communities are distributed Tropic of Capricorn 30°S * Climate patterns are largely Low angle of incoming sur determined by the amount 60°S South Pole of solar energy available March equinox (equator faces sun directly) lune solstice (Northern misphere tilts * Tilt of the Earth determines the seasons * Tropics (region around the equator) receive the most direct sunlight Consta of 23.5 solstice (Northerr Hemisphere tilts Septemb equinox Fig. 34.5 away from sun)

13

Rain and Winds

- * Poldrums - area of calm or very light winds
- * Trade Winds cooling winds in the tropics
- Prevailing Winds caused by * rising and falling air masses and the Earth's rotation
 - Earth moves faster at the * equator (because it is a sphere)
 - * Trade winds (tropical, near equator) - east to west
 - * Westerlies (temperate zones) - west to east

Ocean Currents

- * river-like flow patterns in the oceans
- * caused by prevailing winds, planet's rotation, unequal heating of surface water, and shapes of the continents
- * Impacts Climate:
 - * Gulf Stream brings warm water to Northern Europe, keeping it warmer

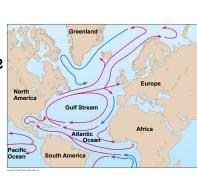
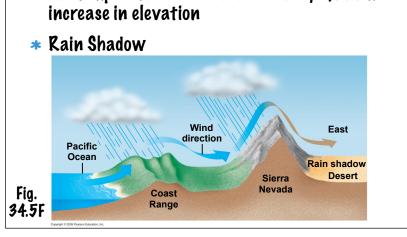



Fig. 34.5E

Landforms * Air Temperature decreases 6°C every 1,000m

16

Biomes * Climate and other abiotic factors control the distribution of organisms * These abiotic factors create biomes * Biomes - major types of ecological associations that occupy broad geographical regions of land or water

17

Coral Reefs

- * Throughout the world
- Exist in the photic zone of warm tropical waters above continental shelves
- Reef is built by generations of coral animals that secrete a hard external skeleton
- Support a huge variety of invertebrates and fish

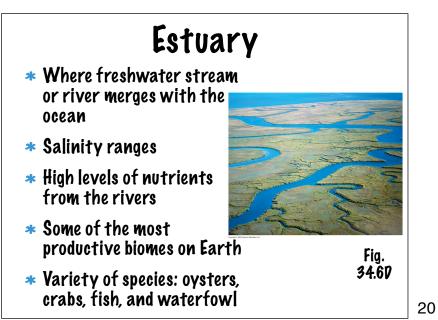


Fig. 34.6B

Intertidal Zone

- * Where ocean meets the land
- * Shore is pounded by waves at high tide
- Exposed to sun and drying winds during low tide
- Home to: algae, barnacles, mussels, clams

19

Aphotic Zone

* "Twilight Zone"

- Not enough light for photosynthesis
- * Food sinks from the photic zone
- * Some animals migrate to the surface at night to feed
- * No Light Zone
 - * Permanently dark
 - * Adaptations: inward pointing teeth, bioluminescence
 - * Most are bottom feeders
 - Low animal density except near hydrothermal vents where chemoautotropic bacteria are present

Freshwater Biomes

- Like oceans, light has a big impact on freshwater biomes
- * Temperature
 - In summer, lakes have a distinct upper layer that does not mix with underlying cooler water
 - * Fish stay in the cooler waters because more oxygen is dissolved there.
- Nutrients
 - Nitrogen and Phosphorus usually limit phytoplankton growth in a lake or pond
 - If there are temperature layers, nutrients can be trapped at the bottom because no mixing occurs
 - Some lakes and ponds have too many nutrients because of nitrogen and phosphorus runoff from sewage and fertilizers.
 - * This causes algal blooms and eventually serious oxygen depletion

22

Rivers and Streams

- Huge change between source and downstream
 - Source water is cold, low levels of nutrients, swift current, and clear
 - Pownstream river widens and slows; warmer, murkier water; higher levels of nutrients

23

Freshwater Wetlands

- Marshes, swamps, and bogs
- Usually near rivers or lakes
- * Huge species diversity
- Help to reduce flooding by storing water
- * Help to filter pollutants

