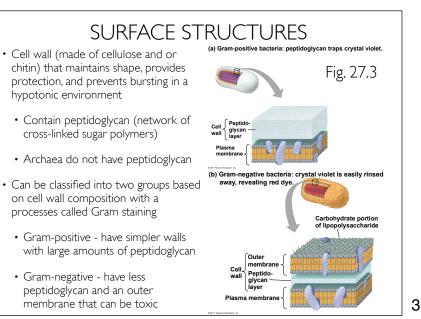


UBIQUITOUS

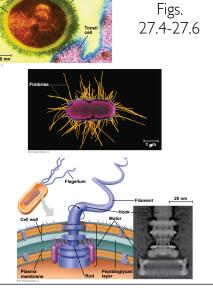
- Most likely they were Earth's first organisms
- · Most are microscopic and unicellular although some species form colonies
- Number of prokaryotes in a single handful of soil is greater than the number of people who have ever lived
- Thrive almost everywhere including places too acidic, too salty, too cold, or too hot for other organisms
- · Huge amount of genetic diversity
- Prokaryotes have a variety of shapes (most common are cocci, bacilli, and spirillum)



(b) Rod-shaped

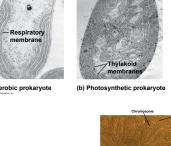
Fig, 27.2

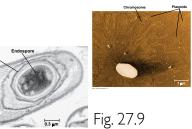
2


(c) Spiral

SURFACE STRUCTURES

- Cell wall is covered by a capsule of sticky polysaccharide or protein in many prokaryotes
- Some have fimbriae and pili which allow them to stick to their substrate or other individuals
- Most motile bacteria propel themselves by flagella (they are structurally and functionally different from eukaryotic flagella)

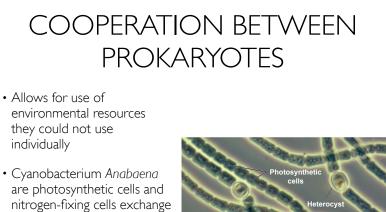



4


5

OTHER PROKARYOTE INFORMATION 0.2 µm 1 µm Fig. • Exhibit taxis 27.7 · Lack compartmentalization Respirator • Some have specialized membranes for metabolic functions Fig. • Genome - DNA not surrounded (b) Photosynthetic pr (a) Aerobic prokaryot by a membrane (nucleoid region) 27.8 Small circular DNA called plasmids

- Reproduce quickly by binary fission
- Can form endospores which remain viable in harsh conditions (possibly for centuries)



NUTRITION AND METABOLISM

Mode	Energy Source	Carbon Source	Types of Organisms
AUTOTROPH			
Photoautotroph	Light	CO ₂ , HCO ₃ ⁻ , or related compound	Photosynthetic prokaryotes (for example, cyanobacteria); plants; certain protists (for example, algae)
Chemoautotroph	Inorganic chemi- cals (such as H_2S , NH ₃ , or Fe ²⁺)	CO ₂ , HCO ₃ ⁻ , or related compound	Unique to certain prokaryotes (for example, Sulfolobus)
HETEROTROPH			
Photoheterotroph	Light	Organic compounds	Unique to certain aquatic and salt-loving prokaryotes (for example, Rhodobacter, Chloroflexus)
Chemoheterotroph	Organic compounds	Organic compounds	Many prokaryotes (for exam- ple, <i>Clostridium</i>) and protists; fungi: animals: some plants

- · Metabolism varies with respect to oxygen
 - Obligate aerobes require oxygen
 - · Facultative anaerobes can survive with or without oxygen
 - Obligate anaerobes poisoned by oxygen
- Can metabolize nitrogen in a process called nitrogen fixation (convert atmospheric nitrogen to ammonia)

7

• Cooperation can also occur in surface coating colonies called biofilms

metabolic products

Fig. 27.14

8

ARCHAEA

- Archaea share traits with bacteria and eukaryotes
- Some live in extreme environments
 - Thermophiles hot environments
 - Halophiles high saline environments
 - Methanogens found in swamps and marshes and produce methane as a waste product

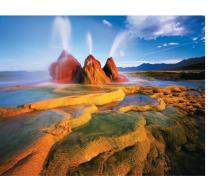
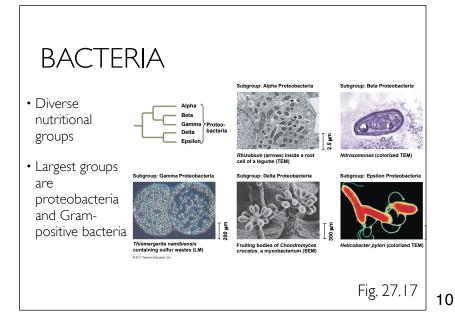



Fig. 27.16

ROLES OF PROKARYOTES

- Life would not survive without them
- Play a major role in continual recycling of chemical elements between the living and nonliving components of the environment in ecosystems
- Chemoheterotrophic prokaryotes function as decomposers breaking down corpses, dead vegetation, and waste products
- Nitrogen-fixing prokaryotes add usable nitrogen to the environment
- Many prokaryotes live with other organisms in symbiotic relationships such as mutualism and commensalism
- Other types live inside hosts as parasites or pathogens

11

IMPACT ON HUMANS

- Mutualistic aid in digestion
- Pathogens
 - Cause about half of all human diseases (ex. Lyme disease)
 - · Cause disease by releasing exotoxins or endotoxins
- Experiments have led to advances in DNA technology
- Used for bioremediation (removing pollutants from the environment)
- Tools in mining, synthesis of vitamins, and production of antibiotics, hormones, and other products