

GENOMES AND THEIR EVOLUTION

DATE 2013 COURSE **AP BIOLOGY**

1

Bioinformatics

- * Many new resources since completion of Human Genome Project
 - * Many nations have data resources (National Library of Medicine, NIH (National Center for Biotechnology Information-NCBI), European Molecular Biology Laboratory, DNA Data Bank of Japan)
 - * NCBI doubles its database every 18 months and provides 3-D views of all protein structures that have been determined

4

		Table 21.1 Genome Sizes a	nd Estimated	l Numbers o	of Genes*
	Genomes	Organism	Haploid Genome Size (Mb)	Number of Genes	Genes per Mb
*	Genomes vary in size, number	Bacteria			-
	of genes and gene density	Haemophilus influenzae	1.8	1,700	940
	or genes and gene density	Escherichia coli	4.6	4,400	950
*	By early 0010 ever 1 000	Archaea			
赤	sy early 2010, over 1,200	Archaeoglobus fulgidus	2.2	2,500	1,130
	genomes were completely	Methanosarcina barkeri	4.8	3,600	750
	sequenced (mostly bacteria)	Eukaryotes			
		Saccharomyces cerevisiae 12 6, (yeast, a fungus)	6,300	525	
*	Genomes of most bacteria are	Acteria are Caenorhabditis elegans (nematode)	100	20,100	200
	Mb) plants are more than 100	Arabidopsis thaliana (mustard family plant)	120	27,000	225
	Mb. humans have 3.000 Mb	Drosophila melanogaster (fruit fly)	165	13,700	83
		Oryza sativa (rice)	430	42,000	98
*	No relationship between	Zea mays (corn)	2,300	32,000	14
40	conomo sizo number of conco	Mus musculus (house mouse)	2,600	22,000	11
	(alternative splicing)	Giant panda)	21,000	9	
	(alternative oplicing)	Homo sapiens (human)	s (human) 3,000 <21,000	7	
*	Mammals (including humans)	Fritillaria assyriaca (lily family plant)	124,000	ND	ND

have the lowest gene density

.8 1,700 .6 4,400	940				
.8 1,700 .6 4,400	940				
.6 4,400					
	950				
2 2,500	1,130				
.8 3,600	750				
Eukaryotes					
6,300	525				
20,100	200				
27,000	225				
13,700	83				
42,000	98				
32,000	14				
22,000	11				
21,000	9				
- 21 000	7				
<21,000	ND				
	0 <21,000 0 ND				

Genome Evolution

*

- Mutation is the basis for genomic evolution
- * Accidents in meiosis can lead to one or more extra sets of chromosomes (polyploidy) which can allow for genes in one set to diverge and accumulate mutations which may persist if organism reproduces
- * Combining of chromosomes also shows evolutionary relationships
- Gene duplication can be caused * by unequal crossing over (Fig. 21.13)

10

Transposable Elements' Contributions to Evolution

- Multiple copies of similar elements may cause recombination or crossing over between chromosomes
- Insertion of a transposable element within a proteincoding sequence may block, increase, or decrease protein production
- * May carry a gene or groups of genes to a new position
- * May create new sites for alternative splicing
- * Changes are usually detrimental but may prove advantageous

Evo-devo Adult * Evolutionary developmental fruit fly biology studies the evolution of developmental processes in Fruit fly embryo multicellular organisms (10 hours) Fly chromosome Analysis of homeotic genes in * Drosophila show that all include Mouse a sequence called a homeobox chromosomes which is identical or similar in all vertebrates and invertebrates Mouse embryo (12 days) * Homeobox genes code for a domain that allows proteins to bind to DNA as Adult mouse transcription regulators * In animals these homeotic FIG. 21.18 genes are called Hox genes

15