Chapter 17: From Gene to Protein

AP Biology 2013

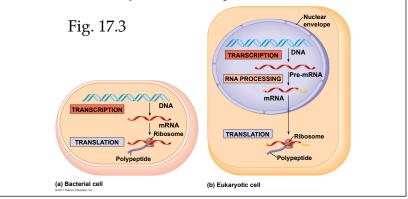
1

Flow of Genetic Information

- Information content of DNA is in the form of specific sequences of nucleotides
- DNA inherited by an organism leads to specific traits by dictating the synthesis of proteins
- Proteins are the links between genotype and phenotype
- · Gene expression, the process by which DNA directs protein synthesis, includes transcription and translation

2

DNA Directs Protein Synthesis


Fig. 17.1

- Two stages called transcription and translation
- The ribosome is the site of translation
- Each gene controls the production of one polypeptide (sometimes referred to as the "one gene, one protein" hypothesis)
- Transcription
 - Synthesis of RNA under the direction of DNA (mRNA)
- Translation
 - Synthesis of a polypeptide from mRNA (happens at ribosomes)

Prokaryotic vs. Eukaryotic

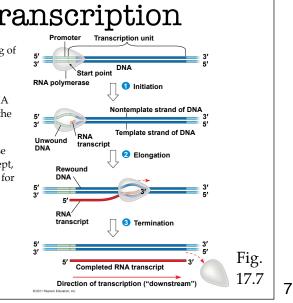
- In prokaryotes, translation of mRNA can begin before transcription has finished.
 - In eukaryotes, this is not possible.

The Codon • Each codon (3 nucleotide sequence) codes for an amino acid or a stop The gene (DNA) determines the sequence of bases along the mRNA • molecule Codons are read from 5' to 3' • DNA template strand DNA molecule Gene 1 **S** TRANSCRIPTION Gene 2 mRNA nRNA TRANSLATION irst Protein Gene 3 Amino acid Fig. 17.5 Fig. 17.4 5

Universality

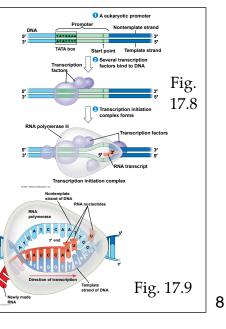
- Genetic code is universal
- Genes can be transcribed and translated after transplantation from one species to another

(a) Tobacco plant expressing a firefly gene


(b) Pig expressing a jellyfish gene

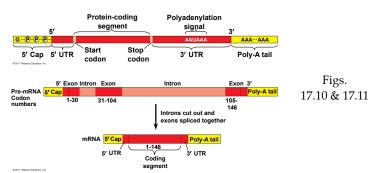
6

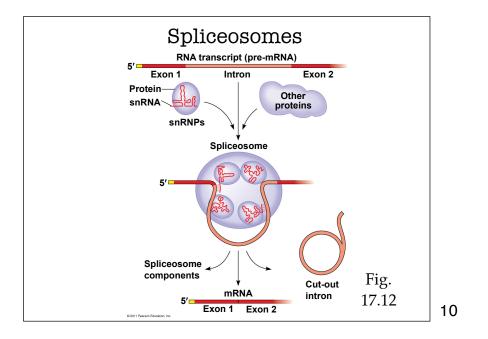
4

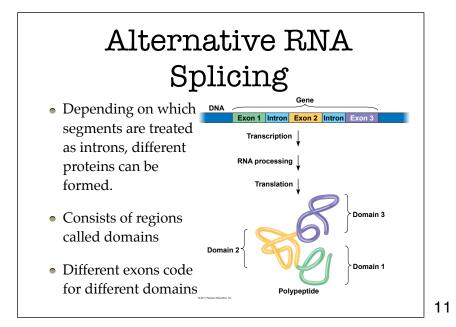

Transcription

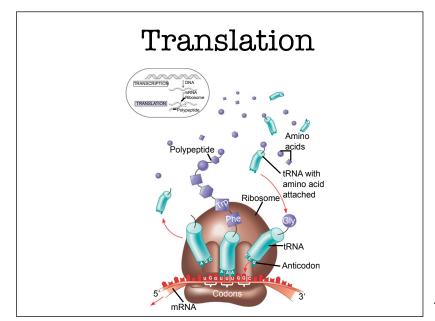
- Started with the binding of • RNA polymerase at a promoter
 - Separates the DNA strand and adds the **RNA** nucleotides
 - Follows same base • pairing rules except, uracil substitutes for thymine
- Three stages: •
 - Initiation 0
 - Elongation 0
 - Termination •

Transcription

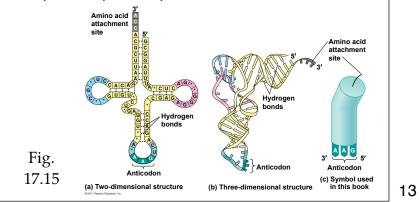

- 0 Promoter regions signal a binding site for the RNA polymerase
- Transcription factors also help the RNA polymerase recognize the promoter sequence
- RNA polymerase continues down the 0 strand exposing 10-20 DNA bases at a time
- Termination signals are different: 0
 - Prokaryotes: RNA polymerase • stops at a termination sequence
 - Eukaryotes: RNA polymerase 0 continues past a polyadenylation signal and will eventually fall off

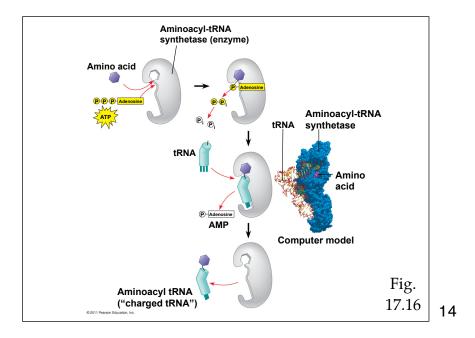



9

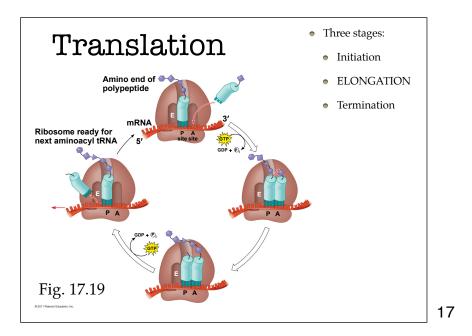

Eukaryotic Modification

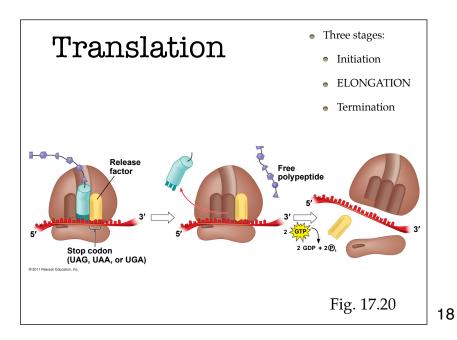
- Enzymes in the nucleus modify pre-mRNA before it is released to the cytoplasm •
- The 5' end receives a nucleotide cap •
- The 3' end receives a poly-A tail 0
- RNA splicing removing introns and joins exons 0





tRNA


- Single RNA strand that is about 80 nucleotides long
- Joining of amino acid to the correct tRNA is accomplished by aminoacyl-tRNA synthetase



Polyribosomes

- Many ribosomes can simultaneously tranlate a single mRNA molecule
 - This can result in signal amplification

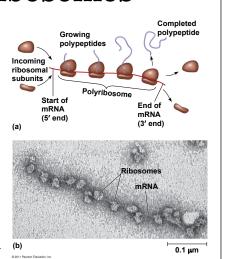
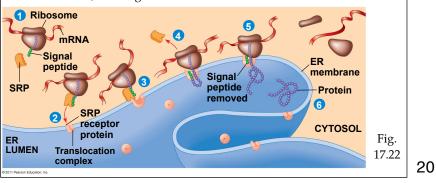
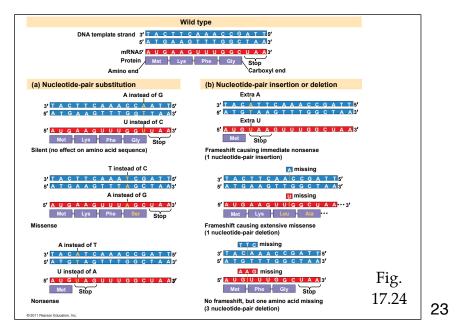



Fig. 17.21 (b)

19

Post-translational Modifications

- May be modified to impact the 3-D shape of the protein
- Proteins destined for the endomembrane system or for secretion must be transported into the ER
 - Have signal peptides to which SRP (signal-recognition particle) binds, enabling the translation ribosome to bind to the ER


Type of RNA	Functions
Messenger RNA (mRNA)	Carries information specifying amino acid sequences of proteins from DNA to ribosomes.
Transfer RNA (tRNA)	Serves as adapter molecule in protein synthesis; translates mRNA codons into amino acids.
Ribosomal RNA (rRNA)	Plays catalytic (ribozyme) roles and structural roles in ribosomes.
Primary transcript	Serves as a precursor to mRNA, rRNA, or tRNA, before being processed by splicing or cleavage. Some intron RNA acts as a ribo- zyme, catalyzing its own splicing.
Small nuclear RNA (snRNA)	Plays structural and catalytic roles in spliceosomes, the complexes of protein and RNA that splice pre-mRNA.
SRP RNA	Is a component of the signal- recognition particle (SRP), the protein-RNA complex that recog- nizes the signal peptides of polypeptides targeted to the ER.
Small nucleolar RNA (snoRNA)	Aids in processing of pre-rRNA transcripts for ribosome subunit formation in the nucleolus.
Small interfering RNA (siRNA) and microRNA (miRNA)	Are involved in regulation of gene expression.

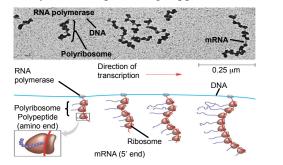
Point Mutations • Mutations - changes in genetic material Point mutations - changes in one base pair • Substitutions - can cause missense or nonsense • Insertions and deletions - can cause frameshifts • Wild-type hemoglobin Sickle-cell hemoglobin Wild-type hemoglobin DNA Mutant hemoglobin DNA 3′ Т 5′ 3' C A т 5 5′ 3′ 5′ 3 mRNA mRNA

3′ 5′

Normal hemoglobin

5′

2


Fig. 17.23

22

Sickle-cell hemoglobin

Proks vs. Euks

- In prokaryotes, translation can begin while transcription is still in progress
- In eukaryotes, RNA processing happens in the nucleus.

